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Multilayer graphene on the carbon face of silicon carbide is an intriguing electronic system which typically
consists of a stack of ten or more layers. Rotational stacking faults in this system dramatically reduce interlayer
coherence. In this paper we report on the influence of interlayer interactions, which remain strong even when
coherence is negligible, on the Fermi-liquid properties of charged graphene layers. We find that interlayer
interactions increase the magnitudes of correlation energies and decrease quasiparticle velocities, even when
remote-layer carrier densities are small, and that they lessen the influence of exchange and correlation on the
distribution of carriers across layers.
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I. INTRODUCTION

Graphene layers prepared by the thermal decomposition
of silicon carbide �SiC� �Refs. 1–9� might play a pivotal role
in carbon-based analog electronics because of their high car-
rier mobilities and because of the possibility of direct growth
on a well-understood single-crystal semiconductor substrate.
This form of graphene, usually termed epitaxial graphene,
can be grown directly on either silicon or carbon terminated
faces of SiC and is scalable to large area circuits.

Epitaxial graphene on the carbon face typically consists of
tens of graphene layers �see however Ref. 10� with rotational
stacking faults that lead to an electronic structure which is in
many ways indistinguishable11–20 from that of a sample with
many electrically isolated single-layer graphene �SLG� �Ref.
21� layers. It is commonly believed1–9,11,13,16 that the layer
closest to the SiC typically has a rather high carrier density
�1012 cm−2, due to charge transfer from the substrate, and
that the overlayers are nearly neutral and unimportant for
most observables. Even though multilayer graphene �MLG�
on the C face of SiC has been shown to possess many of the
distinctive features of SLG, including the half-quantized
quantum-Hall effect,10,22 two key questions arise: �i� to what
extent do Coulomb interactions between electrons in nearby
layers distinguish the electronic properties of MLG layers
from those of SLG? �ii� What is the role of interlayer Cou-
lomb interactions in determining the electron-density distri-
bution which achieves equilibrium between layers? These
are the main issues we address in this paper.

The system we study is sketched in Fig. 1. We assume
that the graphene layers are perfectly decoupled from the
point of view of single-particle tunneling, but take Coulomb
interactions between electrons in different layers, which pro-
vide a source of �two-particle� coupling, fully into account. A
similar model has been introduced earlier in the literature23

to study graphite intercalated compounds. We study, �i� the
impact of intralayer and interlayer Coulomb interactions on
the Fermi-liquid properties of MLG two-dimensional elec-
tron systems and �ii� the combined role of Hartree, exchange,

and correlation potentials in determining the equilibrium dis-
tribution of carrier densities across layers when charge is
transferred to the many-layer system from the SiC
substrate.24 The theory sketched below applies to MLG on
the C face of SiC with an arbitrary number N of layers, to the
decoupled layers sometimes found on the surface of bulk
graphite25,26 or prepared by chemical vapor deposition,26 and
to the experiments by Schmidt et al.27 on micromechanically
exfoliated decoupled layers. For the sake of definiteness and
simplicity, we present explicit numerical results only for
n-type carriers and for the N=2 �double-layer� case.

This manuscript is organized as follows. In Sec. II we
present the model we have used to describe tunnel-decoupled
graphene layers in the presence of intralayer and interlayer
electron-electron �e-e� interactions, and discuss the linear-
response functions which control the physical properties in
which we are interested. In Sec. III we describe the minimal
microscopic theory that allows us to calculate quasiparticle
velocities, ground-state energies, and chemical potentials. In
Sec. IV we present a general scheme to tackle the electro-
chemical equilibrium problem in MLG. Finally, in Sec. V we
present our main numerical results for double-layer graphene
�DLG�. Sec. VI contains a summary of our main conclu-
sions. Appendix collects some lengthy expressions for the
exchange and correlation energies of double-layer graphene
that are important for the technical details of our calcula-
tions.

II. MODEL HAMILTONIAN AND
LINEAR-RESPONSE THEORY

Our model Hamiltonian contains massless-Dirac-fermion
kinetic-energy terms and intralayer and interlayer Coulomb
interactions28

Ĥ = �v �
k,�,�,�

�̂k,�,�
† ���� · k��̂k,�,�

+
1

2S
�

q�0,�,��

V����q��̂q,��̂−q,��. �1�

Here v is the bare Fermi velocity, taken to be the same in all
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the �=1, . . . ,N tunnel-decoupled layers, S is the area of each
layer, V����q� is the matrix of bare Coulomb potentials, and

�̂q,� = �
k,�

�̂k−q,�,�
† �̂k,�,� �2�

is the density operator for the �th layer. Greek letters are
honeycomb-sublattice-pseudospin labels and �= ��x ,�y� is a
vector of Pauli matrices. We also introduce the coupling
constant21 �ee=e2 / ��v�, whose value is �2.2 if for v we use
the SLG Fermi velocity vF�106 m /s.

Several important many-body properties of the Hamil-

tonian Ĥ are completely determined by the N�N symmetric
matrix ��q ,	� whose elements are the density-density
linear-response functions


����q,	� =
1

S
���̂q,�; �̂−q,���	 �3�

with ��Â , B̂��	 the usual Kubo product.29 Within the random
phase approximation �RPA� these functions satisfy the fol-
lowing matrix equation

�−1�q,	� = �0
−1�q,	� − V�q� , �4�

where �0�q ,	� is a N�N diagonal matrix whose elements

�

�0��q ,	� are the well-known30–32 noninteracting �Lindhard�
response functions of each graphene layer at arbitrary doping
n�=N� /S. The off-diagonal �diagonal� elements of the matrix
V= �V�����,��=1,. . .,N represent interlayer �intralayer� Coulomb
interactions.

III. QUASIPARTICLE VELOCITIES, GROUND-STATE
ENERGY, AND CHEMICAL POTENTIALS

The Fermi-liquid parameters of MLG can be calculated
from the knowledge of the retarded quasiparticle self-energy
��. Our results are based on the so-called “G0W”
approximation29,33–36 in which the self-energy �� is ex-

panded to first order in the dynamically screened effective
interaction W �Ref. 29�

W�q,	� = V�q� + V�q���q,	�V�q� = 	V−1�q� − �0�q,	�
−1.

�5�

In this paper we limit our attention to many-body quantities
that can be expressed solely in terms of integrals along the
imaginary frequency axis where the Lindhard function has a
smooth dependence on its parameters.

The microscopic expression for �� in terms of W can be
obtained by a straightforward generalization of the theory of
Ref. 35 to a multicomponent system ��=1�

���k,i	n� = −
1

�
�

s
� d2q

�2��2 �
m=−

+

W���q,i�m�

� �1 + s cos��k,k��

2
G�,s

�0��k�,i	n,m� � , �6�

where �= �kBT�−1, k�=k+q, and 	n,m� =	n+�m. In Eq. �6�
	n= �2n+1�� /� is a fermionic Matsubara frequency while
the sum runs over all the bosonic Matsubara frequencies
�m=2m� /�. The factor in square brackets in Eq. �6�, which
depends on the angle �k,k+q between k and k+q, captures the
dependence of Coulomb scattering on the relative chirality s
of the interacting electrons. The Green’s function
G�,s

�0��k , i	�=1 / 	i	−��,s�k�
 describes the free propagation of
states with wave vector k, Dirac energy ��,s�k�=svk−��

�relative to the chemical potential �� of the �th layer� and
chirality s=�. Note that in the right-hand side of Eq. �6�
there are no terms involving products of the form W���G��,s

�0�

with ����. The reason is that, due to the absence of inter-
layer tunneling, bare propagators are diagonal in the layer
index: in the diagrammatic language �see Fig. 8.17 in Ref.
29�, screened interaction W��� wavy lines closed on a bare
propagator cannot begin on layer label � and terminate on
layer label ����.

After analytic continuation from imaginary to real fre-
quencies, i	→	+ i�, the renormalized Fermi velocity v�

� for
the quasiparticles in the �th layer can be expressed in terms
of the wave vector and frequency derivatives of the retarded
self-energy ��

ret�k ,	� evaluated at the Fermi surface
�k=kF,�� and at the quasiparticle pole 	=��,+�k�

v�
�

v
=

1 + �v�−1�kRe��
ret�k,	��k=kF,�;	=0

1 − �	Re��
ret�k,	��k=kF,�;	=0

. �7�

As explained elsewhere,29,34,35 the derivatives in Eq. �7� can
both be expressed in terms of integrals along the imaginary
frequency axis.

The ground-state energy of MLG can be easily evaluated

from Ĥ. Apart from the trivial kinetic energy contribution

��kin related to the first term in Ĥ, it contains intralayer and
interlayer interaction energy contributions. To evaluate the
interaction energy we have followed a familiar strategy29,30

by combining the coupling-constant integration algorithm
with the fluctuation-dissipation theorem.29,30 Following Ref.
30, we choose the total energy of undoped MLG �Fermi

ẑ

1
2

N

ε1
ε2

εN−1
εN

εN+1

d2,1

dN,N−1

FIG. 1. �Color online� A stack of �=1, . . . ,N graphene layers is
placed between top and bottom dielectrics. The layers are coupled
solely by interlayer Coulomb interactions �red wiggly lines�. The
dielectric constant in the region above the �th layer is labeled by ��

while the one of the substrate is labeled by �N+1. The separation
between the ��+1�th and the �th layer is labeled by d�+1,�.
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energy at the neutrality point in all layers� as our zero of
energy. We separate the contribution that is first order in �ee,
the exchange energy, from the higher order contributions
conventionally referred to in electron-gas theory as the cor-
relation energy. Generalizing the theory for SLG �Ref. 30� to
a multicomponent system, we end up with rather cumber-
some expressions for the exchange ��x and RPA correlation
energies ��c

RPA of MLG �per electron� measured from the
reference undoped system. Explicit expressions for the N
=2 case have been reported in Appendix. Because these ex-
pressions involve only imaginary axis frequency integrals
they are easy to evaluate accurately by quadrature.

The determination of the electrochemical equilibrium,
discussed in more detail below, requires knowledge of ex-
change and correlations contributions to the chemical poten-
tials ��. These can be easily calculated from

�� =
��n��tot�

�n�

, �8�

where n=n1+n2+ ¯nN is the total density and ��tot=��kin
+��x+��c

RPA is the total energy per electron, a function of
n1 , . . . ,nN.

IV. ELECTROCHEMICAL EQUILIBRIUM

The equilibrium density distribution across a multilayer is
achieved when the electrochemical potentials in each distinct
electronic region are identical. For a N-layer graphene sys-
tem grown on a �SiC, say� substrate we identify N+1 elec-
tronic regions; the additional system is a buffer layer �not
shown in Fig. 1� between the bulk substrate and the graphene
layers which is positively charged as a consequence of
charge transfer to the graphene system. The equilibrium den-
sities in all the N+1 layers are determined by N+1 equations
which express the discontinuity of the electric displacement
across charged layers. With the notation introduced in Fig. 1,
Gauss’s law implies that for �=N ,N−1, . . . ,1 �from bottom
to top�

��+1E�+1 − ��E� = − 4�e��, �9�

where �� is the areal electron density in the �th layer. We can
view E1 as a quantity which is determined by a gate voltage.
As long as the distance dTB from the top gate electrode to the
MLG system is large, “chemical” potential contributions are
negligible so that eE1dTG=VTG. We can write down an equa-
tion similar to Eq. �9� for the buffer layer, �N+2EN+2
−�N+1EN+1=+4�e�b. Again we can view EN+2 as an experi-
mentally controllable parameter �fixed by a bottom gate,
eEN+2dBG=VBG�. Here �b is the density of positive charges in
the buffer layer. This model assumes that the substrate is
essentially insulating. In the absence of gates or unintended
dopants that might create electric fields, we would normally
expect E1=EN+2=0. In this case we obtain the charge neu-
trality condition: ��=1

N ��=�b. In general, �b should not be
considered a free parameter. It is determined by the total
graphene charge and the difference between the two experi-
mentally fixed electric fields E1 and EN+2. For MLG samples
grown on SiC �b depend on growth parameters in a way
which is at present not well understood.

As explained above, our convention for the zero of energy
of chemical energy of each layer is that is zero at the Dirac
point, i.e., at electrical neutrality. It is convenient to also
choose an explicit global zero for the electric potential,
which we take to be its value on the top layer. Given the
charge densities, the electrical potentials in each layer can be
conveniently calculated iteratively starting from the top
layer. For �=1,2 , . . . ,N−1 we have that

V�+1 = V� + eE�+1d�+1,�. �10�

Here d�+1,� is the separation between the ��+1�th and the �th
layer. The condition for equilibrium between a graphene
layer and the layer below it is

��+1 + V�+1 = �� + V�. �11�

We need one more equation to fix the densities and that is the
equilibrium condition between the bottom layer and the
buffer: Vb+�=VN+�N. Here � represents the microscopic
physics which causes electrons to spill out of the buffer layer
�where they are likely poorly bonded�. It is known that � is
sensitive to the arrangement of carbon atoms in the buffer
layer. If all of the graphene layers are negatively charged
there will be a large electric field between the Nth layer and
the buffer layer whose sign will tend to repel electrons, i.e.,
to make Vb�VN. The value of � must therefore be positive
and it should be chosen to match experimental results for the
total charge of all layers in a MLG systems. We assume that
� is fixed once a sample has been prepared, i.e., that it is not
influenced by gate voltages, external magnetic fields, or
other parameters that are routinely used to alter the electrical
properties of two dimensional electron systems.

V. NUMERICAL RESULTS AND DISCUSSION

We now turn to the presentation of detailed illustrative
numerical results for DLG. The bare intralayer and interlayer
Coulomb interactions are influenced by the layered dielectric
environment. For the N=2 case, a routine electrostatics
calculation37 implies that the Coulomb interaction in the �
=1 �top� layer is given by

V11�q� =
4�e2

qD�q�
	��2 + �3�eqd + ��2 − �3�e−qd
 , �12�

where

D�q� = 	��1 + �2���2 + �3�eqd + ��1 − �2���2 − �3�e−qd

�13�

and d is a shorthand notation for the interlayer distance d2,1.
The Coulomb interaction in the bottom layer, V22�q�, can be
simply obtained from V11�q� by interchanging �3↔�1. Fi-
nally, the interlayer Coulomb interaction is given by

V12�q� = V21�q� =
8�e2

qD�q�
�2. �14�

In the case N=2 the matrix Eq. �4� can be easily inverted and
the screened potentials W in Eq. �5� can be written in a
particularly compact form38
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W11�q,	� =
V11�q� + 	V12

2 �q� − V11�q�V22�q�

2
�0��q,	�

��q,	�
�15�

and

W12�q� =
V12�q�
��q,	�

. �16�

The expression for W22�q� can be obtained from Eq. �15� by
interchanging 1↔2. In Eqs. �15� and �16� we have intro-
duced the dielectric function

��q,	� = 	1 − V11�q�
1
�0��q,	�
	1 − V22�q�
2

�0��q,	�


− V12
2 �q�
1

�0��q,	�
2
�0��q,	� . �17�

Exchange and correlation energies in MLG systems de-
pend both on interactions on the Fermi wavelength scale
which influence correlations between carriers and on interac-
tions at shorter length scales which influence correlation with
the Dirac sea background. This contrasts sharply with the
case of ordinary two-dimensional electron gases for which
many-body properties depend only on interactions on the
Fermi wavelength scale. Because MLG layers are separated
by atomic length scales and carrier densities are always small
on atomic scales kF,�d is typically small. Taking the limit
qd→0 in Eqs. �12�–�14� we find that the typical carrier-
carrier interactions are layer independent with effective di-
electric constant ��1+�3� /2. Similarly, taking the limit qd
→ we find that carrier-background interactions are ap-
proximately independent in different layers and that they
have an effective dielectric constant determined mostly by
immediately adjacent layers.

With these explicit expressions in our hands we are in the
position to calculate the quasiparticle self-energies �� and
velocities v�

�, the exchange ��x and RPA correlation ��c
RPA

energies, and to solve the electrochemical equilibrium prob-
lem outlined above. For the presentation of the numerical
results for the double-layer system we introduce the density
polarization �= �n2−n1� /n: �=1 when the carrier density is
nonzero only in the bottom layer while �=0 when the two
layers have identical carrier densities.

We begin by addressing the first question that was raised
in Sec. I. In Fig. 2 we present results for the quasiparticle
velocity enhancements in the low- and high-density layers,
v1

� /v and v2
� /v, as functions of their carrier density for sev-

eral different values of the density in the opposite layer. The
quasiparticle velocity in a single layer has a large enhance-
ment due mainly35,39 to exchange interactions between the
carriers and the Dirac sea. Carrier-carrier interactions yield
positive contributions to both the wave vector and frequency
dependence of the self-energy, which partially cancel as con-
tributions to the renormalized quasiparticle velocity much as
they do in the ordinary two-dimensional electron gas. The
end result is that the enhanced velocity due to exchange in-
teractions with the Dirac sea largely survives, especially at
low-carrier densities.

The parameters of this calculation were chosen with DLG
on SiC in mind. The general result is that enhanced quasi-
particle velocity again survives, with merely quantitative

changes due to intralayer and interlayer correlations. Intra-
layer and interlayer Coulomb interactions in layered
graphene systems thus do not bring in qualitative differences,
at least as far as the quasiparticle velocities in DLG are con-
cerned. Two aspects of these results may appear counterin-
tuitive at first glance. First of all, we see that interlayer in-
teractions are important even when the carrier density in
remote layers is zero. Because the Dirac bands are gapless
and because both bands have �-orbital character, the inter-
band transition contribution to the wave vector and
frequency-dependent polarization function is important in
forming the dynamically screened Coulomb interaction even
in the absence of carriers. Second, we notice that increasing
the density of a remote layer does not necessarily weaken the
screened interaction in the layer of interest. The origin of this
property can be traced to the second term in Eq. �15� which
is not intuitive and captures the mutual screening response of
double layers including interlayer interaction effects.

In Fig. 3 we present numerical results for the DLG ex-
change and RPA correlation energies per carrier, ��x and
��c

RPA. In this case we plot energies as a function of total
carrier density for several different layer polarizations in or-
der to illustrate a relationship to well-known dependences on
spin polarization that we discuss below. Exchange energies
are positive because30,40 they are calculated relative to zero
carrier density using the Dirac point self-energy of this limit
as the zero of energy. The increase in exchange energy with
carrier density in graphene has the physical consequence that

a)

b)

FIG. 2. �Color online� Quasiparticle velocities in double-layer
graphene on SiC 	�1=�2=1.0 and �3=6.6 �SiC dielectric constant�
.
The data shown in this figure have been obtained by setting d
=3.35 Å and �ee=2.2. Panel �a�: quasiparticle velocity v1

� in the top
layer �in units of the bare velocity v� as a function of the density n1

in that layer �in units of 1012 cm−2�, for different values of the
density n2 in the opposite layer. Panel �b�: quasiparticle velocity v2

�

in the bottom layer �in units of the bare velocity v� as a function of
the density n2 in that layer �in units of 1012 cm−2�, for different
values of the density n1 in the opposite layer. Circles label data for
the quasiparticle velocity in single-layer graphene �Ref. 35� on SiC.
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corrections to the RPA are expected40 to enhance screening,
instead of weakening it as in an ordinary two-dimensional
electron gas. Notice that the exchange energy of DLG is
larger than that of SLG. The two are equal for �=1 because
the exchange energy depends only on intralayer interactions
	see Eq. �A1� in Appendix
. The larger exchange energy in
the DLG case, in which carriers are separated between two
different layers, has an origin similar to the well-known in-
crease in the exchange energy of an electron gas when two
different spin states are occupied. The correlation energy,
which is negative, is dramatically larger in DLG and strongly
influenced by interlayer interactions. These correlation con-
tributions to the energy suggest that exchange-only approxi-
mations overestimate the degree to which screening is en-
hanced by beyond-RPA corrections. When correlations are
included, the interaction energy preference for unequal par-
titioning of density between layers is also strongly reduced.
This result has an origin similar to the well-known result that
exchange-only theories badly overestimate the tendency of
interactions to favor enhanced spin polarization in ordinary
electron gases.

Finally, in Fig. 4 we address the second question that was
raised in the Introduction. Here we present a typical result
for the dependence of the equilibrium densities in top and
bottom layers, n1

� and n2
�, on the work function of the buffer

layer. We clearly see that the equilibrium density in the top
layer n1

� is substantially smaller than the density in the bot-
tom layer, the ratio n2

� /n1
� changing between 1.5 and 3.5 in

the range of � values explored in this figure. Quite impor-
tantly, note that including e-e interactions at the exchange-

only level severely underestimates the values of the equilib-
rium densities, especially so in the top layer. Including
correlation effects reduces the energetic cost of adding elec-
trons to the graphene layers. In fact we find that the increase
in exchange energy relative to the Dirac point exchange en-
ergy and the decrease in interaction energy due to correla-
tions among the carriers partially compensate, leading to
densities in the graphene layers close to those implied by a
Hartree theory which completely ignores exchange and cor-
relation effects. This finding is surprising in comparison to
the ordinary two-dimensional electron gas case, in which ex-
change always lowers the energy cost of adding carriers and
increases charge transferred from an electron reservoir.

VI. SUMMARY AND CONCLUSIONS

In summary, we have presented a theoretical scheme,
based on the random phase approximation and on the “G0W”
theory, to deal with electron-electron interactions in
multilayer graphene Fermi-liquid systems in which hybrid-
ization is suppressed by relative rotations of honeycomb lat-
tices. We have presented numerical results for the specific
case of a double layer, explicitly demonstrating that inter-
layer Coulomb interactions are not detrimental to the widely
studied and well-understood quasiparticle velocity
enhancement35,39 of isolated single-layer graphene. They do
however change velocity values in a quantitative way. We
have also solved numerically the electrochemical equilib-
rium problem, finding that it is crucial to incorporate corre-

a)

b)

FIG. 3. �Color online� Interaction energies in double-layer
graphene on SiC, measured from the reference undoped system. All
parameters are the same as in Fig. 2. Panel �a�: the exchange energy
��x in units of the Fermi energy �F as a function of n �in units of
1012 cm−2� and for different values of �. Panel �b�: same as in the
top panel but for the RPA correlation energy ��c

RPA. Crosses label
the RPA correlation energy for �=1 if the interlayer interaction V12

is set to zero. Circles label the exchange and RPA correlation ener-
gies in single-layer graphene �Ref. 30� on SiC. Note that the corre-
lation energy obtained neglecting interlayer interactions �crosses� is
practically equal to the single-layer graphene result �circles�.

a)

b)

FIG. 4. �Color online� Electrochemical equilibrium for double-
layer graphene on SiC in the absence of top and bottom gates �E1

=E4=0�. All parameters are the same as in Figs. 2 and 3. The
distance between buffer and bottom layers is equal to 3.35 Å. Panel
�a�: equilibrium density in the top layer, n1

� �in units of 1012 cm−2�,
as a function of the chemical potential � �in eV� in the buffer layer.
Here we have reported results obtained �i� neglecting intralayer and
interlayer e-e interactions �circles�, �ii� including e-e interactions at
the exchange-only level �squares�, and �iii� including both exchange
and correlations �triangles�. Panel �b�: same as in panel �a� but for
the bottom layer. Note how n2

��n1
�.
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lation effects when going beyond a free-electron description
of this system. When both exchange and correlation are in-
cluded, interactions play a major role in lowering the inter-
action energy of MLG systems. Because of strong interlayer
carrier-carrier interactions, the total interaction energy is
relatively insensitive to charge distribution among the layers,
which is well approximated by a theory that includes only
kinetic and electrostatic energies. The unusual positive ex-
change energy of bilayer graphene acts to suppress charge
transfer from the buffer layer. Surprisingly, when both ex-
change and correlation are included corrections to the Har-
tree theory of charge transfer from the MLG buffer layer are
quite small, at least in the N=2 MLG system.

It is difficult to predict a priori to what extent our main
findings for the N=2 double-layer system will survive for
layered systems with large N. Here we would like only to
stress that in analyzing the physics of larger N MLG systems,
it will be essential to recognize that layers contribute to the
systems’s exchange and correlation energy even when their
carrier density vanishes. Because carrier-carrier interactions
are weakly layer-dependent, MLG systems might provide an
interesting approximate realization of a SU�N� electron gas
model in which 1 /N expansions are quantitatively useful.
This might provide an interesting attack on a limit in which
corrections to the G0W theory can be explored by a rigorous
semiclassical theory.
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APPENDIX: EXPLICIT EXPRESSIONS FOR THE
EXCHANGE AND RPA CORRELATION

ENERGIES OF DOUBLE-LAYER
GRAPHENE

For the sake of completeness, in this appendix we report
the expressions we have used to compute the exchange and
RPA correlation energies of DLG. In what follows all sym-
bols with a bar over them denote dimensionless quantities.
We have scaled all wave vectors with the Fermi wave vector
kF=��n evaluated at the total density n, all frequencies with
the Fermi energy �F=vkF, the Lindhard response functions

�

�0� with the massless Dirac fermion density of states
g�F / �2�v2�, and the bare Coulomb potentials V��� with
2�e2 /kF. Here g=4 is the usual spin-valley degeneracy fac-
tor.

It is easy to prove that the exchange energy can be written
as

��x = −
�F�ee

� ��
0

+

dq̄q̄V̄11�q̄��
0

+

d�̄�
̄1
�0��q̄,i�̄�

+ �
0

+

dq̄q̄V̄22�q̄��
0

+

d�̄�
̄2
�0��q̄,i�̄�� �A1�

while the RPA correlation energy as

��c =
�F�ee

� ��
0

+

dq̄q̄V̄11�q̄��
0

+

d�̄	��11�q̄,i�̄�

+ �
̄1
�0��q̄,i�̄�
 + �

0

+

dq̄q̄V̄22�q̄��
0

+

d�̄	��22�q̄,i�̄�

+ �
̄2
�0��q̄,i�̄�
 + 2�

0

+

dq̄q̄V̄12�q̄�

��
0

+

d�̄��12�q̄,i�̄�� . �A2�

In Eq. �A2� we have introduced the quantities �for reasons of
space we will omit to write explicitly the dependence of the
following expressions on the variables q and i��

�11 = −
1

�g�ee�2
̄2
�0��V̄11V̄22 − V̄12

2 �

�� 2L − �g�ee�V̄22
̄2
�0��K + ���

2��
ln� 2L − K − ��

− K − ��
�

−
2L − �g�ee�V̄22
̄2

�0��K − ���

2��
ln� 2L − K + ��

− K + ��
��

�A3�

and

�12 = −
V̄12

�g�ee��V̄11V̄22 − V̄12
2 �

��K + ��

2��
ln� 2L − K − ��

− K − ��
�

−
K − ��

2��
ln� 2L − K + ��

− K + ��
�� , �A4�

where

� = �g�ee�2	�V̄11
̄1
�0� − V̄22
̄2

�0��2 + 4V̄12
2 
̄1

�0�
̄2
�0�
 , �A5�

L = �g�ee�2�V̄11V̄22
̄1
�0�
̄2

�0� − V̄12
2 
̄1

�0�
̄2
�0�� �A6�

and

K = g�ee�V̄11
̄1
�0� + V̄22
̄2

�0�� . �A7�

The expression for �22 can be obtained from Eq. �A3� by
interchanging 1↔2.

Finally, we remark that all the quantities which in Eqs.
�A1� and �A2� are preceded by the sign “�” indicate quanti-
ties defined by differences between doped and undoped val-
ues: for example,

�
̄�
�0��q̄,i�̄� = 
̄�

�0��q̄,i�̄� − 
̄�
�0��q̄,i�̄��kF,�=0 �A8�

and
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��ij�q̄,i�̄� = �ij�q̄,i�̄� − �ij�q̄,i�̄��kF,�=0. �A9�

Note that the dimensionless Lindhard function in the un-
doped limit is the same for every layer and is given by


̄�
�0��q̄,i�̄��kF,�=0 = −

�

8

q̄2

�q̄2 + �̄2
. �A10�
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